Introduction to Full Spectrum LOCA Concept

December 13, 2005

LTR-NRC-05-68 NP-Attachment

Westinghouse Electric Company LLC P.O. Box 355 Pittsburgh, PA 15230-0355

2005 Westinghouse Electric Company LLC
 All Rights Reserved

Meeting Objectives

Introduce NRC to Westinghouse Next Generation LOCA Technology

- Drivers for Full Spectrum LOCA (FSLOCA)
- PIRT development process
- Code selection and improvements
- Validation matrix
- Uncertainty methodology
- Schedule

Obtain Informal Initial Feedback, as Appropriate

Current Westinghouse Technology

Large Break LOCA

- Best-estimate methods based on <u>W</u>COBRA/TRAC (PD2) well established
 - ASTRUM (2004), CQD (1996)
 - Valid from 1 ft² to DEG (2 * 4.12 ft²)
 - Marviken assessments down to 0.76 ft²

Small Break LOCA

- Appendix K methods based on NOTRUMP (1985), S2M (1997)
 - Typical NOTRUMP applications to 8 in only (0.35 ft²)

Intermediate Break LOCA

- Not routinely analyzed, historically considered non-limiting
 - Conclusion supported by recent LB Redefinition studies

Drivers for Enhanced LOCA Margins

Large Break Redefinition

Rulemaking to Revise 50.46 Issued for Public Comment

- Revises maximum design basis accident to be largest connecting pipe ("transition break size", TBS)
- Current requirements remain up to TBS
- More realistic analyses allowed beyond TBS
 - No single failure, realistic power peaking, etc.
- Review of initial licensing applications expected to include more focus on IB LOCA (~ TBS) than previous experience

PWR Mean Break Frequency

Created from information in SECY 04-0060 Table 3 Current Day Estimates

Objectives for Full Spectrum LOCA - 1

- a,c
 - Improve or range models as needed based on code assessment results
 - Use ASTRUM-style uncertainty analysis (or better)

Objectives for Full Spectrum LOCA - 2

Minimize Current/Future Regulatory Challenges

Eliminate SBLOCA as a margin concern

a,c

PIRT Development Process

Scenario Identification and Partitioning, Figures of Merit

- Definition of Intermediate Break LOCA (IBLOCA)
- Applicability of FSLOCA PIRT

Prior Phenomena Identification Processes

- Westinghouse Large Break LOCA (LBLOCA) PIRT
- Westinghouse peer-reviewed Small Break LOCA (SBLOCA)
 PIRT (WCAP-14936)

Ranking Rationale

Low, Medium and High (rather than numerical)

FSLOCA PIRT Overview

Boyack – Wilson, BE2004

FSLOCA PIRT Development Approach

FSLOCA PIRT Development based on LBLOCA and SBLOCA PIRTs

a,c

FSLOCA PIRT — Scenario Identification and Partition

FSLOCA Scenario

a,c

FSLOCA PIRT Divided in Three Main Parts

- Small break (SB)
- Intermediate break (IB)
- Large break (LB)

SB Scenario Partitioning

Divided into Five Time Periods

- Blowdown
- Natural Circulation
- Loop Seal Clearing
- Boil-off
- Recovery

Consistent with Previously Submitted BE SB Methodology

IB Scenario Partitioning

LB Scenario Partitioning

Divided into Three Time Periods

- Blowdown
- Refill
- Reflood

Consistent with Currently Licensed Methodologies

Phenomena Identification

Phenomena Identification

- All phenomena from previous LB and SB PIRTs included
- Consolidation of SB and LB phenomena
 - Elimination of redundant items
 - Terminology clarification (e.g., heat transfer)
 - Consistent application of Low, Medium & High rankings
- Assessment of IB LOCAs and additional plausible phenomena

Phenomena Ranking

Ranking

- SB and LB LOCA used as a starting point
- Development of IB LOCA ranking and review of SB and LB rankings
 - Justification of all differences in LB and SB documented (e. g., terminology)

a,c

Code Selection

Code Improvements

Carry-over of Previous BE SB Improvements for Vessel

- Additional ranging capability on selected models
 - Selected code improvements based on validation results
 - Selected ranging capability based on PIRT and validation results

Validation - Separate Effects Tests

a,s

Validation - Integral Effects Tests

a,c

Uncertainty Methodology Considerations

Uncertainty Methodology

aс

Ranging of Parameters in Uncertainty Assessment

Driven by PIRT and validation results

Uncertainty Methodology Considerations

• Others

Schedule for Full Spectrum LOCA Development

Summary

Westinghouse FSLOCA Development Addresses Industry Needs

- Regulatory changes (LB redefinition, increased scrutiny of Appendix K methods, potential for ANL/CEA negative impacts)
- US/utility strategic objectives
 - EPU reduces need for more natural gas, oil consumption
 - \$/MWe increase from EPU attractive for utilities

Request That Periodic Program Updates be Continued

- Westinghouse to advise NRC of evolution of code, methods
- Any informal feedback beneficial

